Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 1366, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30911013

RESUMO

Deuterostomes are a morphologically disparate clade, encompassing the chordates (including vertebrates), the hemichordates (the vermiform enteropneusts and the colonial tube-dwelling pterobranchs) and the echinoderms (including starfish). Although deuterostomes are considered monophyletic, the inter-relationships between the three clades remain highly contentious. Here we report, Yanjiahella biscarpa, a bilaterally symmetrical, solitary metazoan from the early Cambrian (Fortunian) of China with a characteristic echinoderm-like plated theca, a muscular stalk reminiscent of the hemichordates and a pair of feeding appendages. Our phylogenetic analysis indicates that Y. biscarpa is a stem-echinoderm and not only is this species the oldest and most basal echinoderm, but it also predates all known hemichordates, and is among the earliest deuterostomes. This taxon confirms that echinoderms acquired plating before pentaradial symmetry and that their history is rooted in bilateral forms. Yanjiahella biscarpa shares morphological similarities with both enteropneusts and echinoderms, indicating that the enteropneust body plan is ancestral within hemichordates.


Assuntos
Equinodermos/anatomia & histologia , Fósseis/anatomia & histologia , Filogenia , Animais , Evolução Biológica , China , Cordados não Vertebrados/anatomia & histologia , Cordados não Vertebrados/classificação , Cordados não Vertebrados/fisiologia , Equinodermos/classificação , Equinodermos/fisiologia , Fósseis/história , Sedimentos Geológicos/análise , História Antiga
2.
Dokl Biol Sci ; 483(1): 228-230, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30603944

RESUMO

Histological examination of a specimen of a deep-sea enteropneusts that belongs to a yet undescribed species (Torquaratoridae gen. sp.) revealed numerous trunk coelomoducts. They open into the genital wing coelom as a typical funnels; short ducts communicate with environment through pores located on the outer side of the genital wings. Total number of coelomoducts in a specimen is estimated at several thousand. Trunk coelomoducts have not been found earlier in any member of the phylum. We believe that the release of the male gonad products occurs through coelomoducts of Torquaratoridae gen. sp.


Assuntos
Estruturas Animais/anatomia & histologia , Cordados não Vertebrados/anatomia & histologia , Cordados não Vertebrados/classificação , Animais , Masculino
3.
Zootaxa ; 4208(6): zootaxa.4208.6.2, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-28006796

RESUMO

Gothograptus? meganassa Rickards & Palmer, 2002 is assigned to a new genus Semigothograptus. New, well preserved material from the dubius/nassa Biozone (upper Homerian, Silurian) of the Bartoszyce IG-1 drill core Poland is described. This provides a new phylogenetic perspective on the evolution of post-lundgreni Event retiolitines. Semigothograptus meganassa is considered to be a descendant of Gothograptus nassa, although one of the most significant differences between these forms is the position of the nema, and narrow finite tubarium ending in an appendix in G. nassa. S. meganassa possesses looping meshes of the ancora umbrella recognised in Gothograptus, Papiliograptus, and Baculograptus and shares the common characters of all stratigraphical younger retiolitines. It is recognised that the S. meganassa is known from four terrains: Avalonia, Baltica, Bohemia, and Saxo-Thuringia. Analysis of the genicular hoods of nassa type, characteristic of Gothograptus nassa, Gothograptus kozlowskii, Semigothograptus meganassa, and Neogothograptus eximinassa, demonstrates their unique, solid bandage construction.


Assuntos
Cordados não Vertebrados/anatomia & histologia , Cordados não Vertebrados/classificação , Fósseis/anatomia & histologia , Animais , Evolução Biológica , Polônia
4.
PLoS One ; 11(10): e0162564, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27701429

RESUMO

Phylum Hemichordata, composed of worm-like Enteropneusta and colonial Pterobranchia, has been reported to only contain about 100 species. However, recent studies of hemichordate phylogeny and taxonomy suggest the species number has been largely underestimated. One issue is that species must be described by experts, and historically few taxonomists have studied this group of marine invertebrates. Despite this previous lack of coverage, interest in hemichordates has piqued in the past couple of decades, as they are critical to understanding the evolution of chordates-as acorn worms likely resemble the deuterostome ancestor more closely than any other extant animal. This review provides an overview of our current knowledge of hemichordates, focusing specifically on their global biodiversity, geographic distribution, and taxonomy. Using information available in the World Register of Marine Species and published literature, we assembled a list of 130 described, extant species. The majority (83%) of these species are enteropneusts, and more taxonomic descriptions are forthcoming. Ptychoderidae contained the greatest number of species (41 species), closely followed by Harrimaniidae (40 species), of the recognized hemichordate families. Hemichordates are found throughout the world's oceans, with the highest reported numbers by regions with marine labs and diligent taxonomic efforts (e.g. North Pacific and North Atlantic). Pterobranchs are abundant in Antarctica, but have also been found at lower latitudes. We consider this a baseline report and expect new species of Hemichordata will continue to be discovered and described as new marine habitats are characterized and explored.


Assuntos
Biodiversidade , Cordados não Vertebrados , Animais , Organismos Aquáticos , Cordados não Vertebrados/anatomia & histologia , Cordados não Vertebrados/classificação , Cordados não Vertebrados/genética , Geografia , Filogenia
5.
BMC Biol ; 14: 56, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27383414

RESUMO

BACKGROUND: The combination of a meager fossil record of vermiform enteropneusts and their disparity with the tubicolous pterobranchs renders early hemichordate evolution conjectural. The middle Cambrian Oesia disjuncta from the Burgess Shale has been compared to annelids, tunicates and chaetognaths, but on the basis of abundant new material is now identified as a primitive hemichordate. RESULTS: Notable features include a facultative tubicolous habit, a posterior grasping structure and an extensive pharynx. These characters, along with the spirally arranged openings in the associated organic tube (previously assigned to the green alga Margaretia), confirm Oesia as a tiered suspension feeder. CONCLUSIONS: Increasing predation pressure was probably one of the main causes of a transition to the infauna. In crown group enteropneusts this was accompanied by a loss of the tube and reduction in gill bars, with a corresponding shift to deposit feeding. The posterior grasping structure may represent an ancestral precursor to the pterobranch stolon, so facilitating their colonial lifestyle. The focus on suspension feeding as a primary mode of life amongst the basal hemichordates adds further evidence to the hypothesis that suspension feeding is the ancestral state for the major clade Deuterostomia.


Assuntos
Cordados não Vertebrados/classificação , Fósseis , Animais , Evolução Biológica , Cordados não Vertebrados/anatomia & histologia , Brânquias/anatomia & histologia , Filogenia
6.
Nature ; 527(7579): 459-65, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26580012

RESUMO

Acorn worms, also known as enteropneust (literally, 'gut-breathing') hemichordates, are marine invertebrates that share features with echinoderms and chordates. Together, these three phyla comprise the deuterostomes. Here we report the draft genome sequences of two acorn worms, Saccoglossus kowalevskii and Ptychodera flava. By comparing them with diverse bilaterian genomes, we identify shared traits that were probably inherited from the last common deuterostome ancestor, and then explore evolutionary trajectories leading from this ancestor to hemichordates, echinoderms and chordates. The hemichordate genomes exhibit extensive conserved synteny with amphioxus and other bilaterians, and deeply conserved non-coding sequences that are candidates for conserved gene-regulatory elements. Notably, hemichordates possess a deuterostome-specific genomic cluster of four ordered transcription factor genes, the expression of which is associated with the development of pharyngeal 'gill' slits, the foremost morphological innovation of early deuterostomes, and is probably central to their filter-feeding lifestyle. Comparative analysis reveals numerous deuterostome-specific gene novelties, including genes found in deuterostomes and marine microbes, but not other animals. The putative functions of these genes can be linked to physiological, metabolic and developmental specializations of the filter-feeding ancestor.


Assuntos
Cordados não Vertebrados/genética , Evolução Molecular , Genoma/genética , Animais , Cordados não Vertebrados/classificação , Sequência Conservada/genética , Equinodermos/classificação , Equinodermos/genética , Família Multigênica/genética , Filogenia , Transdução de Sinais , Sintenia/genética , Fator de Crescimento Transformador beta
7.
Mol Biol Evol ; 32(2): 299-312, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25415965

RESUMO

An elaborated tripartite brain is considered one of the important innovations of vertebrates. Other extant chordate groups have a more basic brain organization. For instance, cephalochordates possess a relatively simple brain possibly homologous to the vertebrate forebrain and hindbrain, whereas tunicates display the tripartite organization, but without the specialized brain centers. The difference in anatomical complexity is even more pronounced if one compares chordates with other deuterostomes that have only a diffuse nerve net or alternatively a rather simple central nervous system. To gain a new perspective on the evolutionary roots of the complex vertebrate brain, we made here a phylostratigraphic analysis of gene expression patterns in the developing zebrafish (Danio rerio). The recovered adaptive landscape revealed three important periods in the evolutionary history of the zebrafish brain. The oldest period corresponds to preadaptive events in the first metazoans and the emergence of the nervous system at the metazoan-eumetazoan transition. The origin of chordates marks the next phase, where we found the overall strongest adaptive imprint in almost all analyzed brain regions. This finding supports the idea that the vertebrate brain evolved independently of the brains within the protostome lineage. Finally, at the origin of vertebrates we detected a pronounced signal coming from the dorsal telencephalon, in agreement with classical theories that consider this part of the cerebrum a genuine vertebrate innovation. Taken together, these results reveal a stepwise adaptive history of the vertebrate brain where most of its extant organization was already present in the chordate ancestor.


Assuntos
Encéfalo/anatomia & histologia , Cordados/anatomia & histologia , Animais , Evolução Biológica , Cordados/classificação , Cordados não Vertebrados/anatomia & histologia , Cordados não Vertebrados/classificação , Filogeografia , Vertebrados/anatomia & histologia , Vertebrados/classificação , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/classificação
8.
Curr Biol ; 24(23): 2827-32, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25454590

RESUMO

Ambulacraria, comprising Hemichordata and Echinodermata, is closely related to Chordata, making it integral to understanding chordate origins and polarizing chordate molecular and morphological characters. Unfortunately, relationships within Hemichordata and Echinodermata have remained unresolved, compromising our ability to extrapolate findings from the most closely related molecular and developmental models outside of Chordata (e.g., the acorn worms Saccoglossus kowalevskii and Ptychodera flava and the sea urchin Strongylocentrotus purpuratus). To resolve long-standing phylogenetic issues within Ambulacraria, we sequenced transcriptomes for 14 hemichordates as well as 8 echinoderms and complemented these with existing data for a total of 33 ambulacrarian operational taxonomic units (OTUs). Examination of leaf stability values revealed rhabdopleurid pterobranchs and the enteropneust Stereobalanus canadensis were unstable in placement; therefore, analyses were also run without these taxa. Analyses of 185 genes resulted in reciprocal monophyly of Enteropneusta and Pterobranchia, placed the deep-sea family Torquaratoridae within Ptychoderidae, and confirmed the position of ophiuroid brittle stars as sister to asteroid sea stars (the Asterozoa hypothesis). These results are consistent with earlier perspectives concerning plesiomorphies of Ambulacraria, including pharyngeal gill slits, a single axocoel, and paired hydrocoels and somatocoels. The resolved ambulacrarian phylogeny will help clarify the early evolution of chordate characteristics and has implications for our understanding of major fossil groups, including graptolites and somasteroideans.


Assuntos
Cordados não Vertebrados/genética , Filogenia , Animais , Evolução Biológica , Cordados/classificação , Cordados/genética , Cordados não Vertebrados/classificação , Funções Verossimilhança , Transcriptoma
9.
Biol Bull ; 225(2): 113-23, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24243964

RESUMO

A single specimen of a previously undescribed acorn worm in the family Torquaratoridae was trawled from a bottom depth of about 350 m in the Kara Sea (Russian Arctic). The new species is the shallowest of the exclusively deep-sea torquaratorids found to date, possibly an example of high-latitude emergence. On the basis of ribosomal DNA sequences and morphology, the worm is described here as the holotype of Coleodesmium karaensis n. gen., n. sp. It is most similar in overall body shape to the previously described enteropneust genus Allapasus, but is uniquely characterized by a tubular component of the proboscis skeleton ensheathing the collar nerve cord. Additionally, within the proboscis, the sparseness of the musculature of C. karaensis clearly distinguishes it from the much more muscular members of Allapasus. The holotype is a female bearing about a dozen embryos on the surface of her pharyngeal region, each recessed within a shallow depression in the dorsal epidermis. The embryos, ranging from late gastrula to an early stage of coelom formation, are a little more than 1 mm in diameter and surrounded by a thin membrane. Each embryo comprises an external ectoderm of monociliated cells (not arranged in obvious ciliated bands) and an internal endo-mesoderm; the blastopore is closed. In the most advanced embryos, the anterior coelom is starting to constrict off from the archenteron. Coleodesmium karaensis is the first enteropneust (and indeed the first hemichordate) found brooding embryos on the surface of the mother's body.


Assuntos
Cordados não Vertebrados/classificação , Cordados não Vertebrados/fisiologia , Animais , Regiões Árticas , Cordados não Vertebrados/genética , Cordados não Vertebrados/ultraestrutura , Feminino , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Reprodução , Federação Russa , Especificidade da Espécie
10.
BMC Evol Biol ; 13: 129, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23802544

RESUMO

BACKGROUND: ParaHox and Hox genes are thought to have evolved from a common ancestral ProtoHox cluster or from tandem duplication prior to the divergence of cnidarians and bilaterians. Similar to Hox clusters, chordate ParaHox genes including Gsx, Xlox, and Cdx, are clustered and their expression exhibits temporal and spatial colinearity. In non-chordate animals, however, studies on the genomic organization of ParaHox genes are limited to only a few animal taxa. Hemichordates, such as the Enteropneust acorn worms, have been used to gain insights into the origins of chordate characters. In this study, we investigated the genomic organization and expression of ParaHox genes in the indirect developing hemichordate acorn worm Ptychodera flava. RESULTS: We found that P. flava contains an intact ParaHox cluster with a similar arrangement to that of chordates. The temporal expression order of the P. flava ParaHox genes is the same as that of the chordate ParaHox genes. During embryogenesis, the spatial expression pattern of PfCdx in the posterior endoderm represents a conserved feature similar to the expression of its orthologs in other animals. On the other hand, PfXlox and PfGsx show a novel expression pattern in the blastopore. Nevertheless, during metamorphosis, PfXlox and PfCdx are expressed in the endoderm in a spatially staggered pattern similar to the situation in chordates. CONCLUSIONS: Our study shows that P. flava ParaHox genes, despite forming an intact cluster, exhibit temporal colinearity but lose spatial colinearity during embryogenesis. During metamorphosis, partial spatial colinearity is retained in the transforming larva. These results strongly suggest that intact ParaHox gene clustering was retained in the deuterostome ancestor and is correlated with temporal colinearity.


Assuntos
Cordados não Vertebrados/genética , Evolução Molecular , Proteínas de Homeodomínio/genética , Família Multigênica , Animais , Cordados não Vertebrados/classificação , Genoma , Filogenia
11.
J Exp Zool B Mol Dev Evol ; 320(6): 368-74, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23703796

RESUMO

Understanding the evolutionary history of deuterostomes requires elucidating the phylogenetic interrelationships amongst the constituent taxa. Although the monophyly and interrelationships among the three principal groups-the chordates, the echinoderms, and the hemichordates-are well established, as are the internal relationships among the echinoderm and chordate taxa, the interrelationships among the principal groups of hemichordates-the harrimaniid enteropneusts, the ptychoderid enteropneusts, and the pterobranchs-remain unresolved. Depending on the study some find enteropneusts paraphyletic with pterobranchs (e.g., Cephalodiscus) more closely related to the harrimaniid enteropneusts (e.g., Saccoglossus) than either are to the ptychoderid enteropneusts (e.g., Ptychodera), whereas other studies support a monophyletic Enteropneusta. To try and resolve between these two competing hypotheses, we turned to microRNAs, small ∼22 nt non-coding RNA genes that have been shown to shed insight into particularly difficult phylogenetic questions. Using deep sequencing we characterized the small RNA repertoires of two hemichordate species, Cephalodiscus hodgsoni and Ptychodera flava, and the crinoid echinoderm Antedon mediterranea, and combined our results with the described complements of the hemichordate Saccoglossus kowalevskii, the sea urchin Strongylocentrotus purpuratus, and the starfish Patiria miniata. Our data unambiguously support the monophyly of Enteropneusts as S. kowalevskii shares 12 miRNA sequences with P. flava that are not present in the C. hodgsoni or A. mediterranea libraries, and have never been reported from another metazoan taxon. Thus, these data resolve the phylogenetic position of pterobranchs, ultimately allowing for a better understanding of body plan evolution throughout the deuterostomes.


Assuntos
Cordados não Vertebrados/genética , Evolução Molecular , MicroRNAs/genética , Animais , Sequência de Bases , Cordados não Vertebrados/classificação , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Análise de Sequência de RNA
12.
Mar Pollut Bull ; 69(1-2): 178-88, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23452624

RESUMO

Spatial variation in the density and biomass of Branchiostoma caribaeum was analyzed along a sewage contamination gradient identified by fecal steroids in a subtropical estuary, southern Brazil. Sampling, repeated in the austral winter and summer, followed a hierarchical design nested at four spatial scales (sector>1 km; area>100 m; site>10 m; replicate<1 m). Density and biomass were significantly lower at sites characterized by high concentrations of fecal steroids. The best combinations of variables that explained the biological similarities among sites involved contamination indicators. Most of the variation of biological data was found at the smallest scales and could be related with the sediment texture. Our study highlighted the usefulness of a multi-scale perspective to evaluate distribution patterns of benthic invertebrates as a biological indication of environmental pollution. Gradient analyses at larger spatial scales may be invalidated by the patchy distribution of benthic fauna if they do not account for such small scale variability.


Assuntos
Cordados não Vertebrados/crescimento & desenvolvimento , Monitoramento Ambiental , Esgotos/análise , Poluentes da Água/análise , Animais , Biomassa , Brasil , Cordados não Vertebrados/classificação , Estações do Ano , Esgotos/estatística & dados numéricos , Poluição da Água/estatística & dados numéricos
14.
Nature ; 495(7442): 503-6, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23485974

RESUMO

Hemichordates are a marine group that, apart from one monospecific pelagic larval form, are represented by the vermiform enteropneusts and minute colonial tube-dwelling pterobranchs. Together with echinoderms, they comprise the clade Ambulacraria. Despite their restricted diversity, hemichordates provide important insights into early deuterostome evolution, notably because of their pharyngeal gill slits. Hemichordate phylogeny has long remained problematic, not least because the nature of any transitional form that might serve to link the anatomically disparate enteropneusts and pterobranchs is conjectural. Hence, inter-relationships have also remained controversial. For example, pterobranchs have sometimes been compared to ancestral echinoderms. Molecular data identify enteropneusts as paraphyletic, and harrimaniids as the sister group of pterobranchs. Recent molecular phylogenies suggest that enteropneusts are probably basal within hemichordates, contrary to previous views, but otherwise provide little guidance as to the nature of the primitive hemichordate. In addition, the hemichordate fossil record is almost entirely restricted to peridermal skeletons of pterobranchs, notably graptolites. Owing to their low preservational potentials, fossil enteropneusts are exceedingly rare, and throw no light on either hemichordate phylogeny or the proposed harrimaniid-pterobranch transition. Here we describe an enteropneust, Spartobranchus tenuis (Walcott, 1911), from the Middle Cambrian-period (Series 3, Stage 5) Burgess Shale. It is remarkably similar to the extant harrimaniids, but differs from all known enteropneusts in that it is associated with a fibrous tube that is sometimes branched. We suggest that this is the precursor of the pterobranch periderm, and supports the hypothesis that pterobranchs are miniaturized and derived from an enteropneust-like worm. It also shows that the periderm was acquired before size reduction and acquisition of feeding tentacles, and that coloniality emerged through aggregation of individuals, perhaps similar to the Cambrian rhabdopleurid Fasciculitubus. The presence of both enteropneusts and pterobranchs in Middle Cambrian strata, suggests that hemichordates originated at the onset of the Cambrian explosion.


Assuntos
Cordados não Vertebrados , Fósseis , Filogenia , Animais , Colúmbia Britânica , Cordados não Vertebrados/anatomia & histologia , Cordados não Vertebrados/classificação , Equinodermos/anatomia & histologia , Equinodermos/classificação
15.
Biol Bull ; 225(3): 194-204, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24445445

RESUMO

Hemichordates are instrumental to understanding early deuterostome and chordate evolution, yet diversity and relationships within the group have been understudied. Recently, there has been renewed interest in hemichordate diversity and taxonomy, although current findings suggest that much hemichordate diversity remains to be discovered. Herein, we present a molecular phylogenetic study based on nuclear 18S rDNA sequence data, which includes 35 previously unsampled taxa and represents all recognized hemichordate families. We include mitochondrial 16S rDNA data from 66 enteropneust taxa and three pterobranch Rhabdopleura species, and recover colonial pterobranchs and solitary enteropneusts as reciprocally monophyletic taxa. Our phylogenetic results also reveal a previously unknown clade of at least four species of harrimaniid enteropneusts from cold waters, including Antarctica, the North Atlantic around Iceland and Norway, and the deep sea off Oregon. These small worms (1-5 mm in length), occur from 130 to 2950 m and are not closely related to other deep-sea harrimaniids, indicating that diversity of enteropneusts within the deep sea is broader than previously described in the literature. Discovery of this clade, as well as larger torquaratorids from Antarctica, strengthens hypotheses of close associations between Antarctic and deep-sea fauna.


Assuntos
Biodiversidade , Cordados não Vertebrados/classificação , Cordados não Vertebrados/genética , Temperatura Baixa , Filogenia , Água do Mar , Animais , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética
16.
BMC Biol ; 10: 79, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-23031503

RESUMO

Vetulicolians are an enigmatic group of Cambrian organisms that have been affiliated at various times with arthropods, lobopodians, kinorhynchs and deuterostomes. New evidence on the structure of the lateral pores of vetulicolians published in BMC Biology strengthens the view that they may be total group deuterostomes, but unfortunately sheds no new light on early deuterostome evolution.


Assuntos
Cordados não Vertebrados/classificação , Fósseis , Filogenia , Animais
17.
Sci Rep ; 2: 433, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22666536

RESUMO

The origin and evolution of the complex regulatory landscapes of some vertebrate developmental genes, often spanning hundreds of Kbp and including neighboring genes, remain poorly understood. The Sonic Hedgehog (Shh) genomic regulatory block (GRB) is one of the best functionally characterized examples, with several discrete enhancers reported within its introns, vast upstream gene-free region and neighboring genes (Lmbr1 and Rnf32). To investigate the origin and evolution of this GRB, we sequenced and characterized the Hedgehog (Hh) loci from three invertebrate chordate amphioxus species, which share several early expression domains with Shh. Using phylogenetic footprinting within and between chordate lineages, and reporter assays in zebrafish probing >30 Kbp of amphioxus Hh, we report large sequence and functional divergence between both groups. In addition, we show that the linkage of Shh to Lmbr1 and Rnf32, necessary for the unique gnatostomate-specific Shh limb expression, is a vertebrate novelty occurred between the two whole-genome duplications.


Assuntos
Cordados não Vertebrados/genética , Regulação da Expressão Gênica no Desenvolvimento , Genômica/métodos , Proteínas Hedgehog/genética , Animais , Animais Geneticamente Modificados , Cordados não Vertebrados/classificação , Mapeamento Cromossômico , Clonagem Molecular , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Variação Genética , Proteínas de Fluorescência Verde/genética , Hibridização In Situ , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie , Sintenia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
18.
Development ; 139(14): 2463-75, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22736243

RESUMO

Hemichordates are a deuterostome phylum, the sister group to echinoderms, and closely related to chordates. They have thus been used to gain insights into the origins of deuterostome and chordate body plans. Developmental studies of this group have a long and distinguished history. Recent improvements in animal husbandry, functional tool development and genomic resources have resulted in novel developmental data from several species in this group. In this Primer, we introduce representative hemichordate species with contrasting modes of development and summarize recent findings that are beginning to yield important insights into deuterostome developmental mechanisms.


Assuntos
Cordados não Vertebrados/classificação , Animais , Evolução Biológica , Biologia do Desenvolvimento , Ecossistema , Filogenia
19.
Biol Rev Camb Philos Soc ; 87(2): 480-512, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22385518

RESUMO

The Middle Cambrian Pikaia gracilens (Walcott) has an iconic position as a Cambrian chordate, but until now no detailed description has been available. Here on the basis of the 114 available specimens we review its anatomy, confirm its place in the chordates and explore with varying degrees of confidence its relationships to both extant and extinct chordates and other deuterostomes. The body of Pikaia is fusiform, laterally compressed and possesses about 100 myomeres. The head is small, bilobed and bears two narrow tentacles. There is no evidence for eyes. Apart from a thin dorsal fin (without finrays) and a series of at least nine bilaterally arranged appendages with possible pharyngeal pores at the anterior end, there are no other external features. In addition to the musculature the internal anatomy includes an alimentary canal, the anterior of which forms a prominent lenticular unit that is almost invariably preserved in positive relief. The cavity is interpreted as pharyngeal, implying that the mouth itself was almost terminal. The posterior extension of the gut is unclear although the anus appears to have been terminal. The most prominent internal structure is a reflectively preserved unit, possibly hollow, termed here the dorsal organ. Although formerly interpreted as a notochord its position and size make this less likely. Its original function remains uncertain, but it could have formed a storage organ. Ventral to the dorsal organ a narrower strand of tissue is interpreted as representing the nerve chord and notochord. In addition to these structures, there is also evidence for a vascular system, including a ventral blood vessel. The position of Pikaia in the chordates is largely based on the presence of sigmoidal myomeres, and the more tentative identification of a notochord. In many other respects, Pikaia differs from the expected nature of primitive chordates, especially as revealed in amphioxus and the Cambrian record (including Cathaymyrus, Haikouichthys, Metaspriggina, Myllokunmingia, and Zhongxiniscus). Whilst the possibility that Pikaia is simply convergent on the chordates cannot be dismissed, we prefer to build a scenario that regards Pikaia as the most stem-ward of the chordates with links to the phylogenetically controversial yunnanozoans. This hypothesis has implications for the evolution of the myomeres, notochord and gills. Finally, the wealth of material of Pikaia indicates that, although by definition there must be some sort of taphonomic imprint, the consistency of preservational details allows a reliable reconstruction of the anatomy and does not significantly erode phylogenetically relevant characters.


Assuntos
Evolução Biológica , Cordados não Vertebrados/anatomia & histologia , Cordados não Vertebrados/classificação , Fósseis , Animais , Colúmbia Britânica
20.
J Morphol ; 273(7): 661-71, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22419131

RESUMO

Ten individuals of an enteropneust in the family Torquaratoridae were videotaped between 2,900 and 3,500 m in the Eastern Pacific--one drifting a few centimeters above the bottom, two exposed on the substrate, and seven partly burrowed, reflecting a bentho-pelagic life style. Here, we describe a captured specimen (26 cm living length) as the holotype of Allapasus aurantiacus n. gen., n. sp. The small proboscis is dome-shaped, and the collar is only slightly wider than deep; both of these body regions are more muscular than in other torquaratorids, which presumably facilitates burrowing. The proboscis complex, in contrast to that of shallow-living enteropneusts, lacks a pericardial sac and is located relatively posteriorly in the proboscis stalk. The stomochord is separated from the main course of the gut by the intervention of a small, plate-like proboscis skeleton lacking posterior horns. The most anterior region of the trunk houses the pharynx, in which the pharyngeal skeletal bars are not connected by synapticles. The postpharyngeal trunk comprises three intestinal regions: prehepatic, hepatic (with conspicuous sacculations), and posthepatic. On either side of the worm, a flap of body wall (lateral wing) runs the entire length of the trunk. The two lateral wings can wrap the body so their edges meet in the dorsal midline, although they often gape open along the pharyngeal region. The holotype is a female (presumably the species is gonochoric) with numerous ovaries located in the lateral wings along the pharyngeal region. Each larger ovary contains a single primary oocyte (up to 1,500 µm in diameter) and bulges outwards in an epidermal pouch attached to the rest of the body by a slender stalk. Such externalized ovaries are unprecedented in any animal, and nothing is yet known of their role in the reproductive biology of A. aurantiacus.


Assuntos
Cordados não Vertebrados/anatomia & histologia , Ovário/anatomia & histologia , Animais , Organismos Aquáticos/classificação , Cordados não Vertebrados/classificação , Classificação , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...